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Brenner’s general results for the force and torque experienced by an arbitrary particle 
simultaneously translating and rotating in a linezr shear flow are applied to the 
spherical cap. The cap’s five fundamental resistance tensors are determined and the 
corresponding tensors for the sphere and circular disk are recovered as special cases. 
The problem of a freely moving cap in a linear shear is considered and the resulting 
translational and rotational motions are analysed. The cap’s centre of free rotation is 
found and trajectories of this point are plotted in a few instances. The cap is also 
found to possess a ‘point of planar motion’ which always moves in a plane perpen- 
dicular to the vorticity vector of the undisturbed shear regardless of the initial orienta- 
tion of the cap. It is shown that the motion of the cap actually serves as a model for 
the motions of all ‘oblate’ asymmetric bodies of revolution which are moving freely 
in a linear shear. 

1. Introduction 
The resistance experienced by an arbitrary particle undergoing translational and 

rotational motions in a Stokesian flow field is a problem considered by Brenner (1963, 
1964a, b, c) in a series of four papers. In  the first two a scheme is developed for calcu- 
lating the hydrodynamic force and torque acting on the particle in a fluid a t  rest at 
infinity. Parts 111 and IV  extend the analysis to more general flow conditions at infinity. 

The formulae derived by Brenner for the force and torque involve tensors which are 
intrinsic to the particle in question. The components of these tensors depend on the 
geometry of the particle as well as on the point about which the torque is calculated. 
The laws by which the tensors transform from point to point are provided by Brenner. 

In  this paper the general analysis is applied to a particular shape: the spherical cap. 
More specifically, the problem of a translating rotating spherical cap in a linear shear 
flow is considered and the five fundamental tensors required to describe the Stokes 
resistance completely are found. Two parameters determine the cap’s geometry: the 
radius a of the sphere on which the cap lies and the semi-angle a which the rim of the 
cap subtends at the origin (figure 1) .  Thus the tensors at any point are functions of the 
cap radius a and cap angle a (0 < a < n). The corresponding tensors for the sphere and 
circular disk are recovered when the appropriate limits are taken: a+n (sphere); 
a+ 0, a+ co with aa = c (circular disk of radius c). 

The only bodies for which all five tensors are explicitly known are the ellipsoid and 
its various special cases (Brenner 19643). Brenner (19643,d) has also examined the 
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slightly deformed sphere and found its corresponding resistance tensors to the first 
order of deformation. The spherical cap, however, has a geometry quite different from 
the ellipsoid in that it lacks fore-aft symmetry. This fact makes the determination 
of the cap’s five resistance tensors interesting in its own right; but in addition such 
asymmetry has been shown by Brenner (1972) to have a major effect on the transla- 
tional motion of 8 body which is moving freely in a linear shear flow. Most neutrally 
buoyant bodies of revolution undergo periodic rotational motion in a simple shear 
regardless of their other symmetry properties. For those possessing fore-aft symmetry 
this rotation occurs about the geometrical centre, which simultaneously translates 
unidirectionally along a streamline. For bodies with no such symmetry however, the 
rotational motion occurs about the centre of free rotation, which Nir & Acrivos (1973) 
have found in the case of the spherical dumbbell (two unequal spheres fused at  their 
point of tangency). At the same time this point undergoes a sinuous motion in which it 
translates periodically back and forth across a streamline. Such bodies suffer no net 
displacement across the streamlines but their motion is nevertheless in marked 
contrast to that of axisymmetric bodies possessing fore-aft symmetry. 

Nir & Acrivos (1973) seem to be the only authors who have tackled the problem of 
explicitly solving for the motion of an asymmetric body of revolution in a linear shear 
flow. They did so without the benefit of Brenner’s tensors but their results are consistent 
with his theory. In  this paper Brenner’s results will be relied upon heavily in order to 
determine explicitly the resistance tensors for the spherical cap and then this work 
will be used to analyse the motion of a neutrally buoyant cap in a linear shear. The 
results obtained will be consistent with the work of Nir & Acrivos and the cap’s 
centre oS free rotation will be found. Another fixed point on the cap’s axis whose 
trajectory is particularly simple to calculate is the point of planar motion, which 
always moves in a plane perpendicular to the vorticity vector of the undisturbed 
shear regardless of the cap’s orientation. Surprisingly, this point is also independent of 
the shear causing the motion. The paper concludes with arguments showing that all 
bodies of revolution have a centre of free rotation and a point of planar motion and 
that for symmetric bodies these both coincide with the geometrical centre. A method 
for calculating these points using the components of the resistance tensors is provided. 

2. A translating spherical cap in a quiescent fluid 
Consider a spherical cap which translates in a viscous fluid at rest a t  infinity. Let 

OX YZ be a co-ordinate system attached to the cap such that the origin 0 is the centre 
of the sphere r = a on which the cap lies and the z axis is the axis of symmetry (figure 1). 
Let U be the velocity of the cap with respect to some fixed co-ordinate system O‘X’ Y’Z’ 
having the same orientation as OX YZ. The moving cap induces a fluid motion which 
is described by the fluid velocity vector v(z’,y’,z’,t) referred to the space-fixed 
system. The incompressible fluid has density p and dynamic viscosity p and the 
Reynolds number of the motion is assumed to be zero. The cap velocity U may depend 
on time but the time scale is assumed to be large enough that the unsteady term p dv/dt 
in the time-dependent Stokes equation is negligible when compared with the viscous 
term. The governing equations are therefore 

Vp = pV2v, V.V = 0, 
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' Y  
FIGURE 1. The spherical cap. 

where p is the fluid pressure and the differential operators are taken with respect to 
the space-fixed system. 

From Brenner (1964~) the drag F on the cap is 

F = -pK.U, (2.2) 

where K is a dyadic (second-rank tensor) called the translation tensor. For all particles 
K is symmetric and depends solely on geometry. Because the cap is a body of revolu- 
tion symmetric about the z axis, K has the form 

K = K(f?+jj)+K,frL, (2.3) 

or equivalently, in terms of a 3 x 3 matrix 

The dot product of the tensor K and vector I 

8 1. 
KS 

- can be regarLJd as multjplication of 8 

matrix on the right by a column vector, or in dyadic notation 

K .  U = f(f . U) K +  j(j. U ) K +  fr&. U) K,. (2.6) 

Thus if the cap moves along its axis, U = Ulk' = 1 Ul fr (because the two systems have 

for motion parallel to the axis of symmetry and Collins (1963) has shown this to  be 
the same orientation) and F = -pK,IUI L . The component K, is the drag coefficient 

K ,  = a(6a+8sina+sin2a). (2.6) 

Similarly the component K is the drag coefficient for motion perpendicular to the 
axis of the cap. Dorrepaal(l976) has shown that 

3 a+s ina  I ' 8 sin2 a cod ga 

If the cap moves parallel to its axis it experiences no torque. Motion in any other 
direction, however, tends to rotate the cap and from Brenner (1964~) the torque To 
about the origin 0 of the cap-fixed system is 

T o  = -pCo.U. (2.8) 
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The dyadic Co is a function of geometry and position and is called the coupling tensor 
a t  the point 0. Since the cap is a body of revolution with 0 a point on the axis of 
symmetry, C, has the form 

The component C can be calculated by considering a cap translating with velocity 
U = 9’ = 2 in a quiescent fluid for then the torque experienced by the cap is 

Ranger (1973) and Dorrepaal (1976) have considered the equivalent problem of 
a stationary cap placed asymmetrically in a uniform stream and found that 

c, = C(j9-9j). (2.9) 

To = -pCj. (2.10) 

16 sin2 a cos4 *a 
8 s i n a ~ o s ~ ~ a - k -  (2.11) 

Brenner ( 1 9 6 4 ~ )  has calculated how the coupling tensor transforms with position. 
If rOA is the position vector of some point A fixed with respect to the cap then 

If A is on the axis of symmetry, z units from the origin, then roA = xk and 

CA = c o  - roA X K. (2.12) 

c, = (C-xK)(j1-9j). (2.13) 

Thus for all spherical caps there exists a point R on the axis such that C, = 0: the 
point with co-ordinates (0, 0, C / K ) .  This p i n t ,  called the centre of reaction, is common 
to all bodies of revolution and will be discussed in greater detail in $4. 

3. A translating rotating spherical cap in a quiescent fluid 
Consider a spherical cap which simultaneously translates with velocity U and 

rotates with angular velocity w in a viscous fluid a t  rest a t  infinity. The vectors U 
and w are referred to the space-fixed system and are allowed to be time dependent 
with the restriction that the time scale be large. If P is a point on the axis of rotation 
t,hen the instantaneous velocity of the origin 0 is 

U, = U+r,,xw. (3.1) 

Brenner (1964a) has shown that the force F on the cap and the torque To about the 
origin are 

F = - , u K . U ~ - ~ C Z . ~ ,  (3.2) 

T O  = - , u C ~ . U ~ - , U Q ~ . O ,  (3.3) 

where the asterisk indicates the transpose. 
The only new tensor in the above two expressions is Qo, the rotation tensor at  0. 

The subscript indicates that Qo is a function of position as well as geometry, and 
because the cap is a body of revolution with 0 on the axis of symmetry, the rotation 
tensor is of the form 

(3.4) 

The component SZ, is the torque coefficient for rotational motion about the axis of 
symmetry. Collins (1959) has solved the problem of a spherical cap rotating about its 
axis and from his solution 

no = ~ ( i 9  + jj) + ~ ~ , k k .  

R, = a3{8a - 4 sin 2a + sin3 a>. (3.5) 
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The calculation of G? is more difficult. Suppose the cap is placed such that OY 
coincides with O'Y'. Assume that the cap rotates about the origin with angular 
velocity w = j' = j, but does not translate. The point P in (3.1) is any point along the 
axis OY and so Uo = 0. From (3.3) the torque about the origin is 

To = -pQj .  (3.6) 

Now even though o is constant this is a time-dependent problem because of 
asymmetry. But with the assumption that the angular velocity is small, which is 
necessary if the Stokes approximation is to be valid, the time dependence can be 
ignored and the equivalent problem of a stationary cap in a steadily rotating fluid 
can be used to calculate the component R. This problem has been solved by Dorrepaal 
(1975) by the integral-transform technique invented by Ranger (1973). The torque 
which the cap experiences leads to the result 

- sin2 a c0s4 &a 
8(a+sina)-fsin a (3.7) 

The transformation law for the rotation tensor has been found by Brenner ( 1 9 6 4 ~ ) .  
It is 

where A is any point fixed with respect to the cap. 

QA = Qo-ro,xKxroA+CoxroA-ro,xC~,  (3.8) 

4. The centre of hydrodynamic stress 
In $2  it was shown that all caps possess a centre of reaction R at which C, = 0. The 

role played by R is comparable to that played by the centre of mass in rigid-body 
dynamics in that the translational and rotational motions are uncoupled at R. This is 
clear when (3.2) and (3.3) are expressed in terms of the point R rather than the origin: 

F = -,uK.U,, T R  = -,uQ~,.o. (4.1) 

The hydrodynamic force on the cap depends only on the instantaneous translational 
velocity of R while the torque about R depends solely on the instantaneous angular 
velocity of the cap. The rotation tensor Q, a t  the point R is easily calculated from 
(3.8) to be 

where 
Q, = Q,(P? + jj) + Q, kk, 

QB = Q - C2/K.  

14.2) 

(4.3) 

It was mentioned earlier that the resistance tensors of the cap's two limiting cases 
are recovered when a and a are chosen appropriately. When a = 7~ the cap becomes 
the sphere r = a and the centre of reaction R coincides with the centre of the sphere. 
From (2.6) and (2.7) the translation tensor becomes 

K = 6 7 ~ ~ 1 ,  (4.4) 

where I = I? + jj + kk is the dyadic idemfactor, and it is seen immediately that the 
highly symmetric form of K reflects the isotropy of the sphere with respect to transla- 
tion. Using (3.5) and (3.7) a familiar result for the rotation tensor is obtained, viz. 

Q, = 8ra31. (4.5) 
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On the other hand if a -+ 0 and a -+ 00 such that aa = c, the cap becomes a circular 
disk of radius c. As with the sphere the centre of reaction R coincides with the centre 
of the disk and this is in fact true for all bodies Gf revolution which possess fore-aft 
symmetry. In  the case of the disk, the translation tensor simplifies to 

K = 3$c(n?+jj) + 16cLL, (4.6) 

f i B  = y c 3 1 ,  (4.7) 

which agrees with known results (Brenner 1963), and the rotation tensor becomes 

which verifies the isotropy of the disk with respect to rotation. 

5. A translating rotating cap in a linear shear flow 
Up to now we have considered a moving cap in a quiescent fluid. There are three 

tensors which describe the resistance experienced by the cap and the components of 
these tensors have been found in the literature. The problem of a translating rotating 
cap in a linear shear flow will now be considered and this is a motion which has not been 
treated before. 

The undisturbed linear shear is represented by the vector u, referred to the space- 
fixed system. In terms of tensors the shear is described by the velocity-gradient 
dyadic G = Vu, whose components are Gij = au,lax;. According to Brenner (19643) 
the cap experiences a force F and a torque To about the origin given by 

F = -~[K.(U~-U,)+C~;.(O-OW~)+~~: S], (5.1) 

To = -p[Co. (UO-UO) + fro. (O - ~ f )  + 70 : S], (5.2) 

where uo is the undisturbed shear flow vector u evaIuated at the origin 0, wf = $ curl u 
is the fluid spin vector of the shear and S = +(G + G*). The triadics cPo and 7, are 
tensors of rank 3 known as the shear-force and shear-torque tensors at 0. The colon 
separating 9, from the dyadic S in (5.1) represents a double dot product. In  terms of 
components this can be written as 

where repeated indices are summed over 1 to 3. 
The terms involving 9, and 7, in (5.1) and (5.2) give the force and torque on the 

cap resulting from the linear shear. The triadics are functions of geometry and position 
and are always post-symmetric, i.e. 

a0 : s = @ifk s k j ,  (5.3) 

@ijk = @ik5, 7 i j k  = 7ik5* (5.4) 

In  addition these tensors are unique only to within an additive term of the form al, 
where a is any vector. This is due to the condition of incompressibility and is easily 
shown by considering the identity I : S = divu = 0. Therefore 

(aO+al): S = 9,: S+a(l :  S) = ip,: S. 

9, = cr>(nL+rf;l+jjL+jfij)+@~fififi, ( 5 4  

7, = 7(jzjfC+&j--j~L--jfC~). (5.7) 

(5 .5 )  

Because the cap is a body of revolution with 0 a point on the axis of symmetry, 
9, and 7, have the following forms (Brenner 19643): 
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The shear-force triadic has only two independent non-zero components and the shear- 
torque triadic has but one. 

The calculation of the components 0 and T can be achieved by considering a spherical 
cap a t  rest in a linear shear. In  this case the space-fixed and body-fixed systems can be 
chosen to coincide. We have U, = w = 0 and if the stagnation plane of the shear is 
chosen to pass through the origin in figure 1 we also have u, = 0. This still is an involved 
problem however because after the force on the cap has been computed, the rotational 
effects of the shear, which contribute the term ,uCZ;.w,, must be subtracted off to 
obtain the required drag contribution. 

Fortunately the calculation of 0 and T can be made more direct by considering 
a different condition at infinity. If we require that the fluid velocity v satisfies the 
condition 

v - u = g ~ ( z i + x f i )  as (x2+y2+~2)f-+m, (5 .8)  

where S is some typical velocity gradient, then the flow past the stationary cap is 
a two-dimensional hyperbolic flow with velocities a t  infinity of the same order of 
magnitude as in a linear shear. Once again the origin is a stagnation point of the 
undisturbed flow (u, = 0 )  and now the flow far from the cap is irrotational, giving 
w, = 0. In  this problem, therefore, the only contributions to the force and torque 
come from the terms involving Qo and T, and thus the components 0 and T can be 
calculated directly. 

From (5.8) 
G = VU = &S’(lL+Li), (5.9) 

and because G is symmetric S = G. The force and torque on the cap are, from (5.1) 
and (5.2), 

F = -,d5”0f, T o  = , ~ J T J .  (5.10) 

The two-dimensional hyperbolic flow past a stationary spherical cap can be solved 
using Ranger’s (1973) integral-transform technique. A suitable non-dimensional 
representation for the fluid velocity is 

v = curl2 (a r cos $1 + curl [W r sin $), 
, r sin 8 (5.11) 

where ( r ,  8,$) are spherical polar co-ordinates, and the condition (5.8) a t  infinity 
becomes 

$ - &r3sin28cos8, V = o(r)  as r-+co. (5.12) 

The method of solution is exactly as in Ranger (1973) and the drag and torque on 
the cap yield the following results: 

8 sin2 a C O S ~  +a( 1 - Q sin2 &a) 
3 u+sjna  

Ysinacos2ga-- (5.13) 

). (5.14) 
16 sin2 a c0s4 *a( 1 - Q sin2 &a) 
3 a+sina 

Q sin a cos2 $a( 1 - 6 sin2 &a) + - 

The only remaining component is as. This component is not required when 
calculating the drag in a linear shear flow but it will be needed in later analysis. It 
too can be found by considering an appropriate flow past a statimary cap whose body- 
fixed co-ordinate system coincides with the space-fixed system. 
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An examination of the shear-force triadic in (5.6) reveals that @, affects the drag 
only in flows where the velocity-gradient dyadic has a non-zero component G33. Thus 
in the undisturbed flow the z component of velocity must be a function of z and because 
of incompressibility other diagonal elements of the dyadic G must also be non-zero. 
The simplest axisymmetric flow with these features is 

u = +S(Z? + y j  - 2 4 .  (5.15) 

This flow is most suitable for our purposes because it is irrotational (af = 0) and 
because the origin is a stagnation point (uo = 0). The dyadic describing the flow is 

G = S = $S(f?+jj- 2LL) (5.16) 

and thus the drag experienced by the cap is 

F = -pa0 : S = *,US@,&. (5.17) 

Fortunately this problem is also soluble by Ranger’s integral transform technique. 
In  this instance an axisymmetric version of the method is used and the details parallel 
exactly the solution of Dorrepaal, O’Neill & Ranger (1976). The fluid velocity is 
represented in terms of a stream function $(r, 0) as 

(5.18) 

and the condition (5.15) a t  infinity is 

$ N Qr3sin20cos0 as r - f c o .  (5.19) 

For the sake of brevity the details of the solution are omitted. The component Q8 is 
found to be 

= - 1 6a2 sin a c0s4 ha. (5.20) 

Having determined the shear-force and shear-torque tensors at the origin, it is 
necessary to know how they vary with position. These transformation laws are 
provided by Brenner (19643) and are repeated here: 

9, = 9 0  + 3 W O d  + (Krod)*I’ (5.21) 

T~ = T, + 3[(Co - rod x K) roA + {(C, - rod x K) rod}*] - rod x a,. (5.22) 

In  particular, a t  the centre of reaction R, 

aR = CD,(PPL + tfif + jjL + jLj) + (aR), LLL, (5.23) 

TR = 7R(fjf<+?f;j-jfk-jk?), (5.24) 

(5.25) 

@ R = o ,  T R =  0. (5.26) 

where 

For a sphere, 

For a circular disk of radius c,  

@ R  = @ + ic, ( @ R ) ~  = @, -/- K,C/K, 7~ = 7 + c@/K.  

a, = 0, T~ = - 3&3((~jL + iLj - j& - jLf). (5.27) 
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6. A freely moving cap in a linear shear flow 
Now that the cap’s five resistance tensors have been determined we are in a position 

to discuss the motion of a neutrally buoyant cap in a linear shear. The hydrodynamic 
force on the cap vanishes as does the torque about all points E and so from (5.1) and 
(5.2) the resulting translational and angular velocities are 

U, = uE-A,: S, = 0 f - B :  S, (6.11, (6.2) 

where A, and B are respectively the translational and rotational slip-velocity triadics. 
In terms of the resistance tensors, 

B = (8, - C,. K-l.  C$)-’. (7, - C,. K-l. *,). (6.4) 

Because w, wf and S in (6.2) are independent of E ,  the same must be true of 6. 
A much simpler form for B can be obtained, therefore, by choosing E = R, the centre 
of reaction, in (6.4): 

where 
B = S 2 ~ ~ l . 7 ~  = $B(Pjk+&j-jPk-jki), (6.5) 

B = 2TR/QR. (6.6) 

For all bodies of revolution the tensor B has the form shown in (6.5). Bretherton 
(1962) and Brenner (1972) have shown that the magnitude of the coefficient B plays 
a major role in determining the particle’s resultant motion. In particular, if IBJ < 1 
the effect of the shear is to rotate the particle in such a way that the end of its axis 
traces out an ellipse. There is an infinite family of such periodic orbits and that 
actually described depends on the initial orientation of the particle. However, if 
IBI > 1 the motion is not periodic and the particle assumes a preferred orientation. 

In the case of the cap it can be shown from (6.6) that - 1 < B 6 0 for 0 < a < n. 
Thus all spherical caps undergo periodic rotation in a linear shear flow. In the case of 
the circular disk however, B = - 1 and from Brenner’s (1972) analysis the disk 
translates edge-on to the flow while rotating about its axis with an angular velocity 
dependent on its initial orientation. 

The sign of the coefficient B indicates something about the geometry of the body. 
In  the case of an ellipsoid of revolution with polar radius a,, and equatorial radius a,, 

B = (a! - a2,)/(a! + a?). (6.7) 

Thus prolate ellipsoids (a,, > a,) have positive values of B while oblate ellipsoids 
(a,, < a,) have negative values of B. Even though the spherical cap is unlike the 
ellipsoid of revolution in that it lacks fore-aft symmetry, the fact that B is negative 
for all caps indicates the ‘ oblateness ’ of the cap’sgeometry. The spherical dumbbell of 
Nir & Acrivos (1973) is an example of a prolate body of revolution lacking fore-aft 
symmetry. 

Since the rotational motion of all bodies of revolution in a linear shear has been 
treated in detail by Brenner (1972), the main purpose of this paper is to focus on the 
translational motion of the cap. Because the cap is rotating as it translates, the body- 
fixed co-ordinate system is rotating with respect to the space-fixed system. If P, j and r( 
are the three unit vectors along the axes fixed in the cap (k being along the cap’s axis) 

I 0  F L M  84 
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v' 

FIQURE 2. 

and if P', j' and k' are unit vectors along the space-fixed axes, then the following 
relations exist between these vectors, where 8 and q5 are the angles shown in figure 2: 

i = P' cos 8 cos 4 +j' cos8 sin 4 - k' sin 8, 

j =  -"' 1 sin q5 +a' COB q5, 

k = 9' sin0 cos 6 + j'sin Bsin 4 + kr cos 8. 

(6.8) 

(6.9) 

1 
Now suppose that the cap is suspended in a shear described by 

u = Sx'j', 

where S is the shear rate. The cap responds by rotating and so 8 and q5 are functions 
of time. Brenner (1972) has found that 

tan8 = C,[i+(R2,- i)sin2{2n(t-to)/T}]t, (6.10) 

where 
tan q5 = R, tan {27r(t - to)/T}, 

R, = (gi)' 
is the equivalent axis ratio of the cap, 

T = ( 2 4 s )  (R, + Ri1) 

(6.11) 

(6.12) 

(6.13) 

is the period of the rotation and C, and to are constants of integration which can be 
determined if the initial orientation of the cap is known. 

Equation (6.1) determines the translational motion of any point E fixed with respect 
to the cap. If E lies along the cap's axis then from Brenner (1972) the triadic A, has 
the symmetric form 

A, = A,, kkk+[Ik+(Ifr)*]A,, (6.14) 

which when expanded becomes 

A, = (Al,+2A,)k&fr+A,(nfr+Pri?+331ri+jri3). (6.16) 

Now suppose that the position vector of E with respect to the centre of reaction R is 

r,, = yfr. (6.16) 

The components A,, and A, are functions of a, a and E. 
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From Brenner (1972) the components A,, and A ,  evaluated at the point E are 

Al,(E) = A,l(R) +@’ (6.17) 

A,@) = A , ( R ) + & Y ( l  -w- (6 .18)  

(6 .19)  

= All(R) = ( @ R ) S / ~ S - ~ @ R / ~ *  (6 .20)  

From (6 .3 ) ,  

It follows then that 

Substituting (6 .6 )  and (6 .20)  into (6 .17)  and (6.18)’ we have 

A, = K-’ . aR = @,/R(PPfr + IT;? + jjfr + jfr j) + ( @&/Rs frfrfr . 

= ( @ R ) S / ~ S -  2 @ R / K +  2Y7R/nR, (6.21) 

A,(E) = @R/K+Y(&-7R/nR)* (6.22) 

Turning now to the linear shear flow (6 .9 )  which causes the motion, the dyadic S 
describing this shear is 

S = &S(f’j+ 3’1’). (6.23) 

To compute the product A, : S in (6 .1 )  it  is necessary to express A, in (6.15) in terms 
of space-fixed co-ordinates using (6 .8 ) .  When this is done and the product taken we 
obtain 

A, : S = P’S[A,,(E) sin3 8 sin q5 cos2 4 + A J E )  sin 6 sin $1 
+ j’S[A,,(E) sinS 8 sin2 q5 cos q5 + A J E )  sin 8 cos $1 
+ fr’S[A ( E )  sin2 B cos 8 sin + cos $1. (6 .24)  

It is now possible using (6.1) and (6 .24)  to calculate the trajectory 

p,(t) = &(t) P’ + y&t) j’ + z&) fr’ (6.25) 

of any point E on the cap’s axis of symmetry. The translational velocity of the point E 
is 

uE = d p E ( t ) / d t  (6.26) 

and the fluid velocity of the undisturbed shear at E is 

uE = SzL(t) j’. (6 .27)  

When these two expressions are combined with (6.24)’ which is time dependent by 
virtue of (6.10) and (6 .11) ,  a fist-order differential equation for the trajectory p,(t) 
is obtained which may be easily solved numerically. 

7. The centre of free rotation 
It is obvious from (6.22) that a point Q exists on the cap’s axis where A,(Q) = 0. 

The position vector of Q with respect to the centre of reaction R is rRg = yfr ,  where 

Y = @R/K(7R - &nR). (7 .1)  

The equations of motion for the point Q are 

dx&t)/dt = -SA,,(Q)sin3Bsin~cos~q5, ( 7 . 2 ~ )  

dyb(t)/dt = S[x& -AI,(&)sin~Bsin2$cos(5], (7 .2b)  

dz;(t)/dt = -SA,,(Q) sin28cosBsinq5cosq5. ( 7 . 2 ~ )  
10-2 
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A 

FIGURE 3. The vector k gives the initial orientation of the cap ($o = &r). 

Now since the translational slip-velocity triadic a t  the point Q has the highly 

the product A, : S is always a vector in the direction of the cap’s axis fc regardless 
of the shear. It follows that the velocity U, of the point Q is made up of the velocity 
U, of the undisturbed flow a t  Q plus an axial ‘drift’ velocity A, : S. The latter can 
in no way be due to the rotational motion of the particle and so Q must be the point 
on the cap’s axis about which the rotational motion takes place. The point Q is conse- 
quently called the centre of free rotation. Nir & Acrivos (1973) have derived the equa- 
tions of motion for the centre of free rotation for the spherical dumbbell and their 
equations have exactly the same form as (7.2).  In fact the only difference between 
these two systems is that the dumbbell is a prolate body (R, > 1) while the cap is 
oblate (R, < 1).  The parameter R, enters the equations when 0 and q5 are expressed 
as functions of time. 

Let the constant 
entering the problem when ( 7 . 2 ~ )  is integrated be so chosen that zb(0) = 0. Nir & 
Acrivos have shown that when = in or +n the centre of free rotation Q moves in 
a closed orbit. In  other words Q has a closed trajectory if initially the cap’s axis lies 
in the stagnation plane of the shear. For other values of do, the point Q experiences 
a net translation in the direction of flow. 

Suppose that the ‘orbit constant’ C, in (6.10) is chosen to be infinite so that 0 = 4 
is a constant. This simplifies the trajectory of the centre of free rotation by making 
it two-dimensional (because ( 7 . 2 ~ )  reduces to & ( t )  = constant). In  figure 3 the closed 
two-dimensional trajectories of Q are plotted for three different caps (a = in, in, Qn). 
These trajectories are similar to those of the spherical dumbbell’s centre of free rotation 
except that the caps’ trajectories are stretched in the direction of flow. When q50 is 
given values other than in or gn, the trajectories of Q are found to be very similar to 
the corresponding trajectories of the dumbbell (see Nir & Acrivos 1973) and sketches 
of these are omitted to avoid duplication. 

Suppose that the cap is initially situated such that $(O) = 

3 
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I X’la 

FIGURE 4. In all of these trajectories the cap’s initial orientation is $o = in. (i) a = #n, O(0) = &. 
(ii) a = in, O(0) = in. (iii) a = in, O(0) = tn. (iv) a = in, O(0) = am. (v) a = in, O(0)  = +n. 

- 0.5 

- 6.965 Y’ja 

FIGURE 5. The trajectories of the point of planar motion 
for a hemispherical cap (a = in) with O(0) = +n. 

8. The point of planar motion 

point G where A,,(G) = 0. From (6 .21 )  the position vector of G is rRQ = yfc, where 
A point on the cap’s axis whose trajectory is particularly simple to calculate is the 

Y = ~ R [ ~ R K * - ~ K ( ~ R ) ~ l / K K * r R .  

The equations of motion for the point c f  are 

dx&(t)/dt = -SA,(G)sinBsin$, (8.2a) 

(8 .2b )  

dz&(t)/dt = 0.  ( 8 . 2 ~ )  

It is notable that the trajectory of G is always parallel to the XI, y’ plane [because 
of (8.2c)I. Thus for any given cap there exists a point G which always moves in a plane 
perpendicular to the vorticity vector of the undisturbed shear. This point G is called 
the ‘point of planar motion’. 

In  figures 4 and 5, trajectories of G are plotted. The cap is situated such that 
$ ( O )  = $,, and xL(0) = 0 and once again the trajectories are closed when $,, = &r or &r 

dy&(t)/dt  = S[x&(t) - AJG) sin 8 cos $1, 
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t+a+ 

FIGURE 6. Relative positions of R, &, M and (2 for a typical spherical cap. 

(figure 4). Figure 5 shows the effect on the trajectories of varying the cap’s initial 
orientation q50. 

In  figure 6 a typical cap is shown with the relative positions of G, Q, R and M ,  the 
cap’s centre of mass. The position vector of M is 

roM = ga(l+cosa)rC (8.3) 

and so M lies midway between C and H .  The relative positions of R, Q, M and G are 
the same for all caps and in the cases of the sphere and circular disk these points all 
coincide with the geometrical centre. 

9. The cap as a model for oblate asymmetric bodies of revolution 
Many of the results of the last three sectims have muoh wider application than 

just to the spherical cap. All bodies of revolution have a centre of reaction R and so the 
quantities QR, QR, (aR),, rR as well as K and K ,  are meaningful for such bodies. It 
follows then that all axiqmmetric particles possess a centre of free rotation Q defined 
by (7.1) and a point of planar motion G defiped by (8. l),  where &is a unit vector in the 
direction rRM. When the body of r e v o l u t b h a s  fore-aft symmetry the centres of 
reaction and mass coincide with the geometrical centre. It is also true that the shear- 
force tensor of such bodies vanishes at R and so QR = (aR), = 0. From (7.1) and (8. l), 
therefore, the centre of free rotation Q and the point of planar motion G also coincide 
with R and M ,  at the geometrical centre. 

The sphere is an example of a symmetric body of revolution whose shear-torque 
tensor also vanishes at R. Thus 7, = 0. In  such cases r,,, defined in (8.1), does not 
necessarilytend to zero and in fact in the particular case of the sphere rRQ = #& + 0. 
But this is immaterial because, from (6 .6) ,  B = 0 for such a body and therefore it 
rotates exactly like a particle of fluid. In  addition the body has fore-aft symmetry 
and so its centre simply moves along with the fluid. These two facts taken together 
mean that all points in the body have planar trajectories and so every point of the 
particle (in particular its centre) can be called a point of planar motion. 

In  addition to being an asymmetric body of revolution the spherical cap is oblate 
because it has a negative value of B (Rl < 1). The equations of motion for the centre 
of free rotation Q and the point of planar motion G for any geometrically similar body 
will therefore be qualitatively similar to (7.2) and (8.2) respectively. Thus the trajec- 
tories discussed in $5 7 and 8 and sketched in figures 3-5 are similar in shape to those 
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traced out by the centre of free rotation and the point of planar motion of any oblate 
asymmetric body of revolution. In  this way the cap serves as a model for the motion 
of such a body in a linear shear flow. Similarly the spherical dumbbell of Nir & Acrivos 
serves as a model for the motion of a prolate asymmetric body of revolution in a simple 
shear. 

I am greatly indebted to Professor Howard Brenner for his constructive criticism 
of an earlier version of this manuscript, which resulted in a major revision of its 
contents. 
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